
Assignment 5

Liam Roeth

CSC 153

I defined three versions of the function dot_product(a, b, size), each
implementing a different algorithm:

dot_product_nosimd() No AVX optimization. Multiply floating point
numbers via regular *, then add via +.

dot_product_simd_addmul() Multiply vectors with _m256_mul_ps,
then add vectors of products directly via
_m256_add_ps.

dot_product_simd_dp() Dot-product half of each pair of vectors via
_m256_dp_ps; then merge four such result-
ing pairs of dot products via _m256_blend_ps;
then add blended vectors via _m256_add_ps.

Then, I made each selectable via commandline options. I then ran, using
array size 1000000, a bash test script that compiled the times of 100 runs of
each.

Function Time (μsec)

dot_product_nosimd() 3530.55685

dot_product_simd_addmul() 1618.14716

dot_product_simd_dp() 1314.45971

Table 1: Mean execution times

Results show a massive speed increase (118.185%) due to vector optimiza-
tion, and a small, but significant increase (23.1036%) from the direct multi-
plication and addition to the native dot product function. Results were not
significantly variable with any algorithm.

1

Figure 1: Execution time histogram

#!/bin/bash

n=100

exe="$1"

arg="$2"

while [[n -gt 0]]; do

"$exe" -n "$arg"

echo -n ","

"$exe" -a "$arg"

echo -n ","

"$exe" -d "$arg"

echo ""

n=$(($n-1))

done

Figure 2: Test script

2

